1,199 research outputs found

    Tuning Jammed Frictionless Disk Packings from Isostatic to Hyperstatic

    Get PDF
    We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates rr and initial packing fractions followed by compression and decompression in small steps to reach packing fractions ϕJ\phi_J at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to ϕJ\phi_J. We find that amorphous, isostatic packings exist over a finite range of packing fractions from ϕmin≤ϕJ≤ϕmax\phi_{\rm min} \le \phi_J \le \phi_{\rm max} in the large-system limit, with ϕmax≈0.853\phi_{\rm max} \approx 0.853. In agreement with previous calculations, we obtain ϕmin≈0.84\phi_{\rm min} \approx 0.84 for r>r∗r > r^*, where r∗r^* is the rate above which ϕJ\phi_J is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, bond orientational order, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered, whereas bond-orientational and compositional order increase with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies of the static packings to understand the extent to which the mechanical properties of amorphous, isostatic packings are different from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.Comment: 11 pages, 15 figure

    A high frequency optical trap for atoms using Hermite-Gaussian beams

    Full text link
    We present an experimental method to create a single high frequency optical trap for atoms based on an elongated Hermite-Gaussian TEM01 mode beam. This trap results in confinement strength similar to that which may be obtained in an optical lattice. We discuss an optical setup to produce the trapping beam and then detail a method to load a Bose-Einstein Condensate (BEC) into a TEM01 trap. Using this method, we have succeeded in producing individual highly confined lower dimensional condensates.Comment: 9 pages, 5 figure

    A quasi-pure Bose-Einstein condensate immersed in a Fermi sea

    Full text link
    We report the observation of co-existing Bose-Einstein condensate and Fermi gas in a magnetic trap. With a very small fraction of thermal atoms, the 7Li condensate is quasi-pure and in thermal contact with a 6Li Fermi gas. The lowest common temperature is 0.28 muK = 0.2(1) T_C = 0.2(1) T_F where T_C is the BEC critical temperature and T_F the Fermi temperature. Behaving as an ideal gas in the radial trap dimension, the condensate is one-dimensional.Comment: 4 pages, 5 figure

    Formation of a Matter-Wave Bright Soliton

    Full text link
    We report the production of matter-wave solitons in an ultracold lithium 7 gas. The effective interaction between atoms in a Bose-Einstein condensate is tuned with a Feshbach resonance from repulsive to attractive before release in a one-dimensional optical waveguide. Propagation of the soliton without dispersion over a macroscopic distance of 1.1 mm is observed. A simple theoretical model explains the stability region of the soliton. These matter-wave solitons open fascinating possibilities for future applications in coherent atom optics, atom interferometry and atom transport.Comment: 11 pages, 5 figure

    Controlled Generation of Dark Solitons with Phase Imprinting

    Full text link
    The generation of dark solitons in Bose-Einstein condensates with phase imprinting is studied by mapping it into the classic problem of a damped driven pendulum. We provide simple but powerful schemes of designing the phase imprint for various desired outcomes. We derive a formula for the number of dark solitons generated by a given phase step, and also obtain results which explain experimental observations.Comment: 4pages, 4 figure

    Bose Einstein Condensate in a Box

    Full text link
    Bose-Einstein condensates have been produced in an optical box trap. This novel optical trap type has strong confinement in two directions comparable to that which is possible in an optical lattice, yet produces individual condensates rather than the thousands typical of a lattice. The box trap is integrated with single atom detection capability, paving the way for studies of quantum atom statistics.Comment: 4 pages, 5 figure

    Continuous Bose-Einstein condensation

    Get PDF
    Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitious tests of Einstein's equivalence principle. The key to dramatically increasing the bandwidth and precision of such matter-wave sensors lies in sustaining a coherent matter wave indefinitely. Here we demonstrate continuous Bose-Einstein condensation by creating a continuous-wave (CW) condensate of strontium atoms that lasts indefinitely. The coherent matter wave is sustained by amplification through Bose-stimulated gain of atoms from a thermal bath. By steadily replenishing this bath while achieving 1000x higher phase-space densities than previous works, we maintain the conditions for condensation. This advance overcomes a fundamental limitation of all atomic quantum gas experiments to date: the need to execute several cooling stages time-sequentially. Continuous matter-wave amplification will make possible CW atom lasers, atomic counterparts of CW optical lasers that have become ubiquitous in technology and society. The coherence of such atom lasers will no longer be fundamentally limited by the atom number in a BEC and can ultimately reach the standard quantum limit. Our development provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent matter-wave devices. From infrasound gravitational wave detectors to optical clocks, the dramatic improvement in coherence, bandwidth and precision now within reach will be decisive in the creation of a new class of quantum sensors.Comment: 17 pages, 10 figure
    • …
    corecore